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Query Tuning Hints & Tips

● Query tuning is of the most important points 
when considering database performance.

● Untuned queries may lead to slow execution 
times, long held locks, the creation of 
temporary tables, disk-based sorting, and 
more.
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What is there to tune?

● Common problems arise from improper use of 
data types and from missing/unused indexes.

● Some tuning is done by setting data types.
● Some by improving indexing.
● MySQL allows for index usage hints.
● And some hints can simply be embedded in 

normal SQL.
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Example #1

● Consider the following table, where we track 
the Ipv4 of connected users:

CREATE TABLE online_user (
  online_user_id INT UNSIGNED AUTO_INCREMENT,
  session_id INT UNSIGNED,
  ip_address VARCHAR(15) CHARSET ascii,
  …
  PRIMARY KEY(online_user_id),
  KEY(ip_address)
);
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1st attempt

● A common query would be: “Which users are 
currently connected from Kookoo Islands?”

● We base our search on a known IP range.
● Assume the range is 212.143.0.0 - 

212.143.255.255.

SELECT online_user_id 
FROM online_user 
WHERE ip_address LIKE '212.143.%'
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1st problem

● Now assume the range is 212.143.20.184 – 
212.143.112.101.

● LIKE will not work now.
● Nor will BETWEEN, since '2' > '1'.

SELECT online_user_id 
FROM online_user 
WHERE ip_address 
  BETWEEN '212.143.20.184' AND '212.143.112.101'
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2nd attempt

● INET_ATON to the rescue!

SELECT online_user_id 
FROM online_user 
WHERE INET_ATON(ip_address)
  BETWEEN INET_ATON('212.143.20.184')
  AND INET_ATON('212.143.112.101')
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2nd problem

● The KEY(is_address) cannot be used now.
● To complete this query, MySQL will have to do 

a full table scan.
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Schema change

● Ipv4 is best described as 4 bytes. That's an 
INT.

CREATE TABLE online_user (
  online_user_id INT UNSIGNED AUTO_INCREMENT,
  session_id INT UNSIGNED,
  ip_address INT UNSIGNED,
  …
  PRIMARY KEY(online_user_id),
  KEY(ip_address)
);
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3rd attempt

● This time the index on ip_address is utilized.

SELECT online_user_id 
FROM online_user 
WHERE ip_address
  BETWEEN INET_ATON('212.143.20.184')
  AND INET_ATON('212.143.112.101')
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Example #2

● We wish to find out where a user came from. 
We have the Ipv4 ranges for all countries and 
regions.

CREATE TABLE regions_ip_range (
  regions_ip_range_id INT UNSIGNED AUTO_INCREMENT,
  country VARCHAR(64) CHARSET utf8,
  region VARCHAR(64) CHARSET utf8,
  start_ip INT UNSIGNED,
  end_ip INT UNSIGNED
  …
  PRIMARY KEY(regions_ip_range_id),
  ...
);
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1st attempt

● Add the following index:

● Use the following query:

KEY(start_ip, end_ip)

SELECT * FROM regions_ip_range 
WHERE start_ip <= INET_ATON('212.143.80.165')
AND end_ip >= INET_ATON('212.143.80.165')
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1st problem

● The 'end_ip' part of the index cannot be 
utilized, as there is a range condition on the 
first column – 'start_ip'

● The query will essentially behave as if we only 
have KEY(start_ip), and will most probably 
execute a full table scan, as on average half 
the rows match our criteria.
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2nd attempt

● Define two indexes:

● Use the same query, and hope for 
index_merge.

KEY(start_ip), KEY(end_ip)
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2nd problem

● index_merge is not guaranteed.
● In our case, it will probably not be used, since 

both conditions return a large number of rows. 
MySQL may choose to do full table scan.
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3rd attempt

● We realize that IP ranges are mutually 
exclusive.

● Define just one index:

● Run the following query:

KEY(start_ip)

SELECT * FROM regions_ip_range 
WHERE start_ip <= INET_ATON('212.143.80.165')
ORDER BY start_ip DESC LIMIT 1
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Success

● By understanding the values and indexing 
strategies, we manage to rewrite queries 
which make for a dramatic performance boost.
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Sometimes MySQL is wrong

● It happens that MySQL produces the wrong 
query plan.

● This may happen even for a simple two-table 
join. It may happen for a single table.

● ANALYZE table may solve the problem, but 
still, not always.

● How can we ask/force MySQL to use the 
correct plan?
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Example #3: true story

● Consider the following table and query:
CREATE TABLE data (
  id INT UNSIGNED AUTO_INCREMENT,
  type INT UNSIGNED,
  level TINYINT UNSIGNED,
  …
  PRIMARY KEY(id),
  KEY(type),
  ...
);

SELECT id FROM data WHERE  type=12345 AND level > 3
ORDER BY id
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Facts

● Table 'data' is very large (tens of millions of 
rows).

● Filtering by 'type' is good: for said query, only 
110 rows have 'type=12345'.

● Query takes a very long time to complete.
● EXPLAIN shows MySQL chose using the 

PRIMARY KEY instead of KEY(type).
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1st solution: IGNORE INDEX

● We can instruct MySQL to ignore specific 
keys:

SELECT id FROM data IGNORE INDEX(PRIMARY)
WHERE  type=12345 AND level > 3
ORDER BY id
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2nd solution: USE INDEX

● We can instruct MySQL to only consider 
specific keys:

SELECT id FROM data USE INDEX(type)
WHERE  type=12345 AND level > 3
ORDER BY id
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Are there other alternatives?

● It's best if we can enter MySQL's mind. 
● Obviously it was wrong in choosing the query 

plan.
● But what caused the confusion?

… ORDER BY id ...

● When dropping the 'ORDER BY', MySQL 
chooses the 'good' plan.
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3rd solution: avoid ORDER BY

● We can drop the 'ORDER BY' part, and let the 
application logic handle the sorting.

● Requires coding on the application side.
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4th solution: disable use of key

● Instead of using IGNORE INDEX, we can 
negate the use of the primary key in the 
following manner:

SELECT id FROM data WHERE  type=12345 AND level > 3
ORDER BY id+0

● Id+0, IFNULL(id,id) etc. are functions on id. 
Functions disable keys in MySQL
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5th solution: make it seem harder

SELECT id FROM data WHERE  type=12345 AND level > 3
ORDER BY id, type, level

● We modify the ODER BY:

● Since id is PRIMARY KEY, it is UNIQUE. 
Therefore, the order of results is unchanged.

● However, we make MySQL think it's more 
complicated. It will avoid using the PRIMARY 
KEY.
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Thank you!

Hope to see you in the next MySQL Users 
Group meeting!
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