

1

MySQL Queries Tuning Hints

Shlomi Noach
openark.org

shlomi@openark.org

MySQL Users Group Meeting
Israel, April 2nd. 2009

2

Query Tuning Hints & Tips

● Query tuning is of the most important points
when considering database performance.

● Untuned queries may lead to slow execution
times, long held locks, the creation of
temporary tables, disk-based sorting, and
more.

3

What is there to tune?

● Common problems arise from improper use of
data types and from missing/unused indexes.

● Some tuning is done by setting data types.
● Some by improving indexing.
● MySQL allows for index usage hints.
● And some hints can simply be embedded in

normal SQL.

4

Example #1

● Consider the following table, where we track
the Ipv4 of connected users:

CREATE TABLE online_user (
 online_user_id INT UNSIGNED AUTO_INCREMENT,
 session_id INT UNSIGNED,
 ip_address VARCHAR(15) CHARSET ascii,
 …
 PRIMARY KEY(online_user_id),
 KEY(ip_address)
);

5

1st attempt

● A common query would be: “Which users are
currently connected from Kookoo Islands?”

● We base our search on a known IP range.
● Assume the range is 212.143.0.0 -

212.143.255.255.

SELECT online_user_id
FROM online_user
WHERE ip_address LIKE '212.143.%'

6

1st problem

● Now assume the range is 212.143.20.184 –
212.143.112.101.

● LIKE will not work now.
● Nor will BETWEEN, since '2' > '1'.

SELECT online_user_id
FROM online_user
WHERE ip_address
 BETWEEN '212.143.20.184' AND '212.143.112.101'

7

2nd attempt

● INET_ATON to the rescue!

SELECT online_user_id
FROM online_user
WHERE INET_ATON(ip_address)
 BETWEEN INET_ATON('212.143.20.184')
 AND INET_ATON('212.143.112.101')

8

2nd problem

● The KEY(is_address) cannot be used now.
● To complete this query, MySQL will have to do

a full table scan.

9

Schema change

● Ipv4 is best described as 4 bytes. That's an
INT.

CREATE TABLE online_user (
 online_user_id INT UNSIGNED AUTO_INCREMENT,
 session_id INT UNSIGNED,
 ip_address INT UNSIGNED,
 …
 PRIMARY KEY(online_user_id),
 KEY(ip_address)
);

10

3rd attempt

● This time the index on ip_address is utilized.

SELECT online_user_id
FROM online_user
WHERE ip_address
 BETWEEN INET_ATON('212.143.20.184')
 AND INET_ATON('212.143.112.101')

11

Example #2

● We wish to find out where a user came from.
We have the Ipv4 ranges for all countries and
regions.

CREATE TABLE regions_ip_range (
 regions_ip_range_id INT UNSIGNED AUTO_INCREMENT,
 country VARCHAR(64) CHARSET utf8,
 region VARCHAR(64) CHARSET utf8,
 start_ip INT UNSIGNED,
 end_ip INT UNSIGNED
 …
 PRIMARY KEY(regions_ip_range_id),
 ...
);

12

1st attempt

● Add the following index:

● Use the following query:

KEY(start_ip, end_ip)

SELECT * FROM regions_ip_range
WHERE start_ip <= INET_ATON('212.143.80.165')
AND end_ip >= INET_ATON('212.143.80.165')

13

1st problem

● The 'end_ip' part of the index cannot be
utilized, as there is a range condition on the
first column – 'start_ip'

● The query will essentially behave as if we only
have KEY(start_ip), and will most probably
execute a full table scan, as on average half
the rows match our criteria.

14

2nd attempt

● Define two indexes:

● Use the same query, and hope for
index_merge.

KEY(start_ip), KEY(end_ip)

15

2nd problem

● index_merge is not guaranteed.
● In our case, it will probably not be used, since

both conditions return a large number of rows.
MySQL may choose to do full table scan.

16

3rd attempt

● We realize that IP ranges are mutually
exclusive.

● Define just one index:

● Run the following query:

KEY(start_ip)

SELECT * FROM regions_ip_range
WHERE start_ip <= INET_ATON('212.143.80.165')
ORDER BY start_ip DESC LIMIT 1

17

Success

● By understanding the values and indexing
strategies, we manage to rewrite queries
which make for a dramatic performance boost.

18

Sometimes MySQL is wrong

● It happens that MySQL produces the wrong
query plan.

● This may happen even for a simple two-table
join. It may happen for a single table.

● ANALYZE table may solve the problem, but
still, not always.

● How can we ask/force MySQL to use the
correct plan?

19

Example #3: true story

● Consider the following table and query:
CREATE TABLE data (
 id INT UNSIGNED AUTO_INCREMENT,
 type INT UNSIGNED,
 level TINYINT UNSIGNED,
 …
 PRIMARY KEY(id),
 KEY(type),
 ...
);

SELECT id FROM data WHERE type=12345 AND level > 3
ORDER BY id

20

Facts

● Table 'data' is very large (tens of millions of
rows).

● Filtering by 'type' is good: for said query, only
110 rows have 'type=12345'.

● Query takes a very long time to complete.
● EXPLAIN shows MySQL chose using the

PRIMARY KEY instead of KEY(type).

21

1st solution: IGNORE INDEX

● We can instruct MySQL to ignore specific
keys:

SELECT id FROM data IGNORE INDEX(PRIMARY)
WHERE type=12345 AND level > 3
ORDER BY id

22

2nd solution: USE INDEX

● We can instruct MySQL to only consider
specific keys:

SELECT id FROM data USE INDEX(type)
WHERE type=12345 AND level > 3
ORDER BY id

23

Are there other alternatives?

● It's best if we can enter MySQL's mind.
● Obviously it was wrong in choosing the query

plan.
● But what caused the confusion?

… ORDER BY id ...

● When dropping the 'ORDER BY', MySQL
chooses the 'good' plan.

24

3rd solution: avoid ORDER BY

● We can drop the 'ORDER BY' part, and let the
application logic handle the sorting.

● Requires coding on the application side.

25

4th solution: disable use of key

● Instead of using IGNORE INDEX, we can
negate the use of the primary key in the
following manner:

SELECT id FROM data WHERE type=12345 AND level > 3
ORDER BY id+0

● Id+0, IFNULL(id,id) etc. are functions on id.
Functions disable keys in MySQL

26

5th solution: make it seem harder

SELECT id FROM data WHERE type=12345 AND level > 3
ORDER BY id, type, level

● We modify the ODER BY:

● Since id is PRIMARY KEY, it is UNIQUE.
Therefore, the order of results is unchanged.

● However, we make MySQL think it's more
complicated. It will avoid using the PRIMARY
KEY.

27

Thank you!

Hope to see you in the next MySQL Users
Group meeting!

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

