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About common_schema

 common_schema is an open source 
project, licensed under the New BSD 
License.

 Authored by Shlomi Noach
http://openark.org

 Major contributions by Roland Bouman
http://rpbouman.blogspot.com

 Several contributions & suggestions by the 
community
(Thanks!)

http://openark.org/
http://rpbouman.blogspot.com/
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About common_schema

 common_schema is a framework: a set of 
views, routines and a script interpreter

 It is a schema that lies next to 
INFORMATION_SCHEMA.

 It lies completely within the MySQL server, 
and does not require external packages or 
dependencies. No Perl scripts nor UDFs or 
plugins.
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Getting & Installing

 common_schema is merely a SQL file.
 Currently hosted on Google Code:

http://code.google.com/p/common-schema/

 Install by importing SQL file into MySQL:

bash$ mysql < /tmp/common_schema-1.2.2.sql
complete
- Base components: installed
- InnoDB Plugin components: installed
- Percona Server components: not installed

Installation complete. Thank you for using 
common_schema!

http://code.google.com/p/common-schema/
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Schema analysis views

 Views providing non-trivial information 
about your table design, keys, foreign 
keys, and more.

 While INFORMATION_SCHEMA provides 
with complete info, it is ofter difficult to 
aggregate. It is sometimes too normalized, 
and at other times too de-normalized.

 We consider a couple examples. Full list:
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/schema_analysis_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/schema_analysis_views.html
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redundant_keys

 Find duplicate/redundant keys in your 
schema.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/redundant_keys.html

– Similar to pt-duplicate-key-checker
mysql> SELECT * FROM redundant_keys WHERE 
table_schema='sakila' \G
              table_schema: sakila
                table_name: rental
      redundant_index_name: rental_date_2
   redundant_index_columns: rental_date
redundant_index_non_unique: 1
       dominant_index_name: rental_date
    dominant_index_columns: rental_date, inventory_id,
                              customer_id
 dominant_index_non_unique: 0
            sql_drop_index: ALTER TABLE `sakila`.`rental ̀  
                            DROP INDEX `rental_date_2`

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/redundant_keys.html
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sql_range_partitions

 Analyze your range partitioned tables
– Looks for a pattern in partition values
– Offers the next-CREATE-statement, next-

DROP-statement

 Supports 5.1 and 5.5 notations.
 Elegantly solves what is usually done by 

home-brewed scripts.
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sql_range_partitions

 sql_add_next_partition column offers the 
ADD/REORGANIZE PARTITION statement 
for each table
mysql> CREATE TABLE test.report …  PARTITION BY RANGE (…) ;

mysql> select * from sql_range_partitions where 
table_name='report' \G
            table_schema: test
              table_name: report
        count_partitions: 7
sql_drop_first_partition: alter table `test`.`report` 
                          drop partition `p0`
  sql_add_next_partition: alter table `test`.`report` 
   reorganize partition `p6` into (
     partition `p_20090701000000` values less than       
     (1246395600) /* 2009-07-01 00:00:00 */ , 
     partition p_maxvalue values less than MAXVALUE
   )
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SQL generation & eval()

 Both views above present with SQL 
columns, offering a statement to execute.

 This is at the heart of common_schema's 
views, and is part of the server-side 
mechanism the framework strongly 
supports.

 The eval() routine accepts such SQL 
columns and executes (evaluates) them.
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eval()

 Accepts a query returning a text column. 
Column data is expected to be SQL 
statements to be executed.
mysql> call eval("
  SELECT sql_add_next_partition
  FROM sql_range_partitions 
  WHERE table_schema='webprod'");
Query OK, 0 rows affected

– A new partition has just been added on
– all range-partitioned tables in `webprod`
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Process-list views

 Provide extra info, not presented by 
PROCESSLIST or not at all made 
easy/available by MySQL.

 Information not offered in PROCESSLIST:
– The GRANTEE owning the process: 

john@10.0.0.17 != john@10.0.%
– Special notes about the processes (replication 

client? Replication slaves? SUPER? Myself?)

 Different views tackle different aspects.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_views.html
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Process-list views

 processlist_grantees extends 
PROCESSLIST and adds missing info.

 Various views aggregate processes by 
different params (connection origin, state, 
totals), and provide with runtime metrics

 slave_status provides a query-able 
minified version of SHOW SLAVE STATUS 

 slave_hosts lists all known connected 
slaves
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Process-list views

 Like many other views, 
processlist_grantees offers SQL columns.

 Example: kill all queries executed by 
“normal” users and which are running for 
over 10 minutes:
mysql> call eval("
  SELECT sql_kill_query 
  FROM processlist_grantees 
  WHERE TIME > 600
    AND NOT is_super AND NOT is_repl 
  ");
Query OK, 0 rows affected
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Security views

 MySQL's SHOW GRANTS command has 
many limitations:
– Only for a single grantee
– Cannot be used by queries
– Does not provide with metadata about 

privileges domains

 INFORMATION_SCHEMA's privileges 
tables are missing routine privileges and 
are inconveniently denormalized
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_views.html
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Security: sql grants

 sql_grants & sql_show_grants overcome 
said limitations by providing SQL access to 
account privileges.

 sql_grants example:
           GRANTEE: 'world_user'@'localhost'
              user: world_user
              host: localhost
        priv_level: `world`.*
   priv_level_name: schema
current_privileges: INSERT, SELECT, UPDATE
         sql_grant: GRANT INSERT, SELECT, UPDATE ON 
                    `world`.* TO 'world_user'@'%'
        sql_revoke: REVOKE INSERT, SELECT, UPDATE ON 
                    `world`.* FROM 'world_user'@'%'
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Security: sql grants

user

USER_PRIVILEGES SCHEMA_PRIVILEGES

TABLE_PRIVILEGES

numbersprocs_priv

COLUMN_PRIVILEGES

 Consider tables involved in these views:

 Duplicating accounts, finding similar  or 
redundant accounts are usage samples for 
these views.
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InnoDB views

 InnoDB's INFORMATION_SCHEMA tables 
are highly informative, yet very 
normalized.

 These tables provide info about 
transactions, runtimes, locks, more...

 Almost every reasonable query against 
these tables must involve a join or two.

 common_schema offers common useful 
shortcuts.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/innodb_plugin_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/innodb_plugin_views.html
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innodb_transactions

 This view tells us:
– Which transactions are running?

● For how long? 
● How long are they being idle? Locked?

– What queries are they issuing?

 Example: kill idle transactions:
mysql> call eval("
  SELECT sql_kill_query 
  FROM innodb_transactions 
  WHERE trx_idle_seconds >= 30
  ");
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innodb_locked_transactions

 Which transaction is being blocked?
– By which transaction? For how long?
– What queries are both transaction executing

 Example: which transactions/queries are 
blocking other transactions for 30 seconds 
or more?

mysql> SELECT DISTINCT locking_trx_query
  FROM innodb_locked_transactions 
  WHERE trx_wait_seconds >= 30;
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Many more views...

 sql_accounts allows for account blocking & 
releasing without touching privileges.

 global_status_diff_nonzero is a mini-
monitoring view, presenting status change 
over 10 seconds.

 last_query_profiling shows aggregated 
profile for last executed query.
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Routines

 common_schema offers more than 50 
useful stored routines, part of the 
framework's function library.

 From text parsing & manipulation, 
through process diagnostics, query 
analysis & dynamic execution, to security 
routines, the function library extends and 
complements MySQL's own functions.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/execution_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/text_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_routines.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/execution_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/text_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_routines.html
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Security routines

 killall() kills connections by matching text 
with user, host or grantee.

 security_audit() audits server's privileges 
tables and configuration to detect such 
threats as empty or duplicate passwords, 
excessive privileges, excessive host access, 
“old passwords” etc.

mysql> call killall('analytics');

mysql> call killall('localhost');
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Execution routines

 eval() evaluates the queries generated by a 
given query. 

 exec(), exec_file() dynamically executes a 
given query or semicolon delimited list of 
queries. 

 run(), run_file() execute QueryScript code.

mysql> call exec('
  CREATE TABLE test.t(id INT); 
  INSERT INTO test.t VALUES (2),(3),(5);
');



 

D B A ' s  f r a m e w o r k  f o r  M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript

 A SQL oriented scripting language, offering 
tight integration with SQL commands, easy 
and familiar control flow syntax and high 
level abstraction of complex tasks.

 common_schema implements QueryScript 
via interpreter, based on stored routines.

 This makes QueryScript suitable for 
administration and bulk tasks, not for 
OLTP tasks.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/query_script.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/query_script.html
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QueryScript

 Code samples:
foreach($table, $schema, $engine: 
          table in sakila) {
  if ($engine = 'InnoDB')
    ALTER TABLE :${schema}.:${table}
    ENGINE=InnoDB ROW_FORMAT=COMPRESSED 
    KEY_BLOCK_SIZE=8;
}

split (DELETE FROM sakila.rental WHERE 
   rental_date < NOW() - INTERVAL 5 YEAR) {
  throttle 2;
}
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Why QueryScript?

 Stored routine programming is a pain:
– Requires one to actually store the routine 

within the schema: can't just run something.
– Syntax is cumbersome (ANSI:SQL).
– Does not offer deeper insight into MySQL's 

limitations and bottlenecks.
– Does not provide with syntax for oh-so-

common tasks
– Verbose. Can't see the forest for the trees.
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Compare: stored routine
DELIMITER $$

DROP PROCEDURE IF EXISTS some_proc $$
CREATE PROCEDURE some_proc() 
READS SQL DATA
SQL SECURITY INVOKER
begin
  declare some_id bigint unsigned default null;
  declare done tinyint default 0;
  declare my_cursor cursor for SELECT some_id FROM some_table;
  declare continue handler for NOT FOUND set done = 1;

  open my_cursor;
  read_loop: loop
    fetch my_cursor into some_id;
    if done then
      leave read_loop;
    end if;
    -- do something with some_id
  end loop;

  close my_cursor;
end $$

DELIMITER ;
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Compare: QueryScript

set @script := '
  foreach ($some_id: SELECT some_id FROM some_table) 
  {
    -- do something with $some_id
  }
  ';
call run(@script);

 Significantly less overhead
 Familiar C-family syntax
 No need to store the code in schema
 Can execute script directly from file

call run('/path/to/script.qs');
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QueryScript conditions

 Familiar if, while or loop-while statements.
 But conditions are also tightly integrated 

with SQL, and so queries make for valid 
conditions.

if (@val > 3) {
  pass;
}
while (DELETE FROM world.Country 
       WHERE Continent = 'Asia' LIMIT 10)
{
  throttle 2;
}



 

D B A ' s  f r a m e w o r k  f o r  M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript foreach

 A sophisticated looping device, allowing 
iteration over queries, sets, numbers 
range, databases, tables...

 But also acknowledges MySQL limitations 
and provides with a safer access method.

 Table iteration uses I_S optimizations to 
avoid excessive locks:
foreach($tbl, $scm: table like wp_posts)
  ALTER TABLE :${scm}.:${tbl} ADD COLUMN 
  post_geo_location VARCHAR(128);
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QueryScript split

 Automagically breaks a bulk operation into 
smaller chunks.

 Supports DELETE, UPDATE, 
INSERT...SELECT, REPLACE...SELECT

 Supports single and multi table statements
split (DELETE FROM sakila.rental WHERE 
  rental_date < NOW() - INTERVAL 5 YEAR);

split (insert into world.City_duplicate 
       select * from world.City) {
  throttle 1;
}
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QueryScript: more goodies

 throttle statement controls script 
execution time, reduces server load

 Local variables auto-cleanup, can be used 
(expanded) in statements where variables 
not allowed (table names, LIMIT value etc.)

 try-catch statement is available: easy error 
handling mechanism

 echo, eval, throw statements make for 
easy development
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call for help()

 common_schema documentation is 
available in these formats:
– Online documentation (directly in code 

repository)
– Bundled HTML download
– Inline: Just call for help():

call help('split');
+--------------------------------------------------------------------------------+
| help                                                                           |
+--------------------------------------------------------------------------------+
| QueryScript Flow Control: split statement                                      |
|                                                                                |
| SYNOPSIS                                                                       |
|                                                                                |
| Single table operations, autodetect mode:
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Support common_schema

 Download and try it out
 Report issues

http://code.google.com/p/common-schema/issues/list

 Happy to receive ideas and contributions
http://bit.ly/UPC3vh
http://code.google.com/p/common-schema/issues/entry?
template=Request%20for%20new%20component

 Above all else: spread the word!

http://code.google.com/p/common-schema/issues/list
http://bit.ly/UPC3vh
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Thank you!

 Visit http://openark.org for news & 
updates.

 Other open source projects:
– openark kit

http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/introduction.html

– mycheckpoint
http://code.openark.org/forge/mycheckpoint

http://openark.org/
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/introduction.html
http://code.openark.org/forge/mycheckpoint
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