
 Copyright © 2012, Shlomi Noach

common_schema
D B A ' s f r a m e w o r k f o r M y S Q L

S h l o m i N o a c h
h t t p : / / o p e n a r k . o r g

 Copyright © 2012, Shlomi Noach

common_schema
D B A ' s f r a m e w o r k f o r M y S Q L

common_schema
D B A ' s f r a m e w o r k f o r M y S Q L

 About
 Schema analysis
 eval() and SQL generation
 Process & security
 Status & transaction monitoring
 QueryScript

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

About common_schema

 common_schema is an open source
project, licensed under the New BSD
License.

 Authored by Shlomi Noach
http://openark.org

 Major contributions by Roland Bouman
http://rpbouman.blogspot.com

 Several contributions & suggestions by the
community
(Thanks!)

http://openark.org/
http://rpbouman.blogspot.com/

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

About common_schema

 common_schema is a framework: a set of
views, routines and a script interpreter

 It is a schema that lies next to
INFORMATION_SCHEMA.

 It lies completely within the MySQL server,
and does not require external packages or
dependencies. No Perl scripts nor UDFs or
plugins.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Getting & Installing

 common_schema is merely a SQL file.
 Currently hosted on Google Code:

http://code.google.com/p/common-schema/

 Install by importing SQL file into MySQL:

bash$ mysql < /tmp/common_schema-1.2.2.sql
complete
- Base components: installed
- InnoDB Plugin components: installed
- Percona Server components: not installed

Installation complete. Thank you for using
common_schema!

http://code.google.com/p/common-schema/

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Schema analysis views

 Views providing non-trivial information
about your table design, keys, foreign
keys, and more.

 While INFORMATION_SCHEMA provides
with complete info, it is ofter difficult to
aggregate. It is sometimes too normalized,
and at other times too de-normalized.

 We consider a couple examples. Full list:
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/schema_analysis_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/schema_analysis_views.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

redundant_keys

 Find duplicate/redundant keys in your
schema.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/redundant_keys.html

– Similar to pt-duplicate-key-checker
mysql> SELECT * FROM redundant_keys WHERE
table_schema='sakila' \G
 table_schema: sakila
 table_name: rental
 redundant_index_name: rental_date_2
 redundant_index_columns: rental_date
redundant_index_non_unique: 1
 dominant_index_name: rental_date
 dominant_index_columns: rental_date, inventory_id,
 customer_id
 dominant_index_non_unique: 0
 sql_drop_index: ALTER TABLE `sakila`.`rental ̀
 DROP INDEX `rental_date_2`

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/redundant_keys.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

sql_range_partitions

 Analyze your range partitioned tables
– Looks for a pattern in partition values
– Offers the next-CREATE-statement, next-

DROP-statement

 Supports 5.1 and 5.5 notations.
 Elegantly solves what is usually done by

home-brewed scripts.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

sql_range_partitions

 sql_add_next_partition column offers the
ADD/REORGANIZE PARTITION statement
for each table
mysql> CREATE TABLE test.report … PARTITION BY RANGE (…) ;

mysql> select * from sql_range_partitions where
table_name='report' \G
 table_schema: test
 table_name: report
 count_partitions: 7
sql_drop_first_partition: alter table `test`.`report`
 drop partition `p0`
 sql_add_next_partition: alter table `test`.`report`
 reorganize partition `p6` into (
 partition `p_20090701000000` values less than
 (1246395600) /* 2009-07-01 00:00:00 */ ,
 partition p_maxvalue values less than MAXVALUE
)

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

SQL generation & eval()

 Both views above present with SQL
columns, offering a statement to execute.

 This is at the heart of common_schema's
views, and is part of the server-side
mechanism the framework strongly
supports.

 The eval() routine accepts such SQL
columns and executes (evaluates) them.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

eval()

 Accepts a query returning a text column.
Column data is expected to be SQL
statements to be executed.
mysql> call eval("
 SELECT sql_add_next_partition
 FROM sql_range_partitions
 WHERE table_schema='webprod'");
Query OK, 0 rows affected

– A new partition has just been added on
– all range-partitioned tables in `webprod`

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Process-list views

 Provide extra info, not presented by
PROCESSLIST or not at all made
easy/available by MySQL.

 Information not offered in PROCESSLIST:
– The GRANTEE owning the process:

john@10.0.0.17 != john@10.0.%
– Special notes about the processes (replication

client? Replication slaves? SUPER? Myself?)

 Different views tackle different aspects.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_views.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Process-list views

 processlist_grantees extends
PROCESSLIST and adds missing info.

 Various views aggregate processes by
different params (connection origin, state,
totals), and provide with runtime metrics

 slave_status provides a query-able
minified version of SHOW SLAVE STATUS

 slave_hosts lists all known connected
slaves

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Process-list views

 Like many other views,
processlist_grantees offers SQL columns.

 Example: kill all queries executed by
“normal” users and which are running for
over 10 minutes:
mysql> call eval("
 SELECT sql_kill_query
 FROM processlist_grantees
 WHERE TIME > 600
 AND NOT is_super AND NOT is_repl
 ");
Query OK, 0 rows affected

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Security views

 MySQL's SHOW GRANTS command has
many limitations:
– Only for a single grantee
– Cannot be used by queries
– Does not provide with metadata about

privileges domains

 INFORMATION_SCHEMA's privileges
tables are missing routine privileges and
are inconveniently denormalized
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_views.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Security: sql grants

 sql_grants & sql_show_grants overcome
said limitations by providing SQL access to
account privileges.

 sql_grants example:
 GRANTEE: 'world_user'@'localhost'
 user: world_user
 host: localhost
 priv_level: `world`.*
 priv_level_name: schema
current_privileges: INSERT, SELECT, UPDATE
 sql_grant: GRANT INSERT, SELECT, UPDATE ON
 `world`.* TO 'world_user'@'%'
 sql_revoke: REVOKE INSERT, SELECT, UPDATE ON
 `world`.* FROM 'world_user'@'%'

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Security: sql grants

user

USER_PRIVILEGES SCHEMA_PRIVILEGES

TABLE_PRIVILEGES

numbersprocs_priv

COLUMN_PRIVILEGES

 Consider tables involved in these views:

 Duplicating accounts, finding similar or
redundant accounts are usage samples for
these views.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

InnoDB views

 InnoDB's INFORMATION_SCHEMA tables
are highly informative, yet very
normalized.

 These tables provide info about
transactions, runtimes, locks, more...

 Almost every reasonable query against
these tables must involve a join or two.

 common_schema offers common useful
shortcuts.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/innodb_plugin_views.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/innodb_plugin_views.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

innodb_transactions

 This view tells us:
– Which transactions are running?

● For how long?
● How long are they being idle? Locked?

– What queries are they issuing?

 Example: kill idle transactions:
mysql> call eval("
 SELECT sql_kill_query
 FROM innodb_transactions
 WHERE trx_idle_seconds >= 30
 ");

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

innodb_locked_transactions

 Which transaction is being blocked?
– By which transaction? For how long?
– What queries are both transaction executing

 Example: which transactions/queries are
blocking other transactions for 30 seconds
or more?

mysql> SELECT DISTINCT locking_trx_query
 FROM innodb_locked_transactions
 WHERE trx_wait_seconds >= 30;

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Many more views...

 sql_accounts allows for account blocking &
releasing without touching privileges.

 global_status_diff_nonzero is a mini-
monitoring view, presenting status change
over 10 seconds.

 last_query_profiling shows aggregated
profile for last executed query.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Routines

 common_schema offers more than 50
useful stored routines, part of the
framework's function library.

 From text parsing & manipulation,
through process diagnostics, query
analysis & dynamic execution, to security
routines, the function library extends and
complements MySQL's own functions.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/execution_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/text_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_routines.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/execution_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/text_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/security_routines.html
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/process_routines.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Security routines

 killall() kills connections by matching text
with user, host or grantee.

 security_audit() audits server's privileges
tables and configuration to detect such
threats as empty or duplicate passwords,
excessive privileges, excessive host access,
“old passwords” etc.

mysql> call killall('analytics');

mysql> call killall('localhost');

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Execution routines

 eval() evaluates the queries generated by a
given query.

 exec(), exec_file() dynamically executes a
given query or semicolon delimited list of
queries.

 run(), run_file() execute QueryScript code.

mysql> call exec('
 CREATE TABLE test.t(id INT);
 INSERT INTO test.t VALUES (2),(3),(5);
');

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript

 A SQL oriented scripting language, offering
tight integration with SQL commands, easy
and familiar control flow syntax and high
level abstraction of complex tasks.

 common_schema implements QueryScript
via interpreter, based on stored routines.

 This makes QueryScript suitable for
administration and bulk tasks, not for
OLTP tasks.
http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/query_script.html

http://common-schema.googlecode.com/svn/trunk/common_schema/doc/html/query_script.html

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript

 Code samples:
foreach($table, $schema, $engine:
 table in sakila) {
 if ($engine = 'InnoDB')
 ALTER TABLE :${schema}.:${table}
 ENGINE=InnoDB ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;
}

split (DELETE FROM sakila.rental WHERE
 rental_date < NOW() - INTERVAL 5 YEAR) {
 throttle 2;
}

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Why QueryScript?

 Stored routine programming is a pain:
– Requires one to actually store the routine

within the schema: can't just run something.
– Syntax is cumbersome (ANSI:SQL).
– Does not offer deeper insight into MySQL's

limitations and bottlenecks.
– Does not provide with syntax for oh-so-

common tasks
– Verbose. Can't see the forest for the trees.

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Compare: stored routine
DELIMITER $$

DROP PROCEDURE IF EXISTS some_proc $$
CREATE PROCEDURE some_proc()
READS SQL DATA
SQL SECURITY INVOKER
begin
 declare some_id bigint unsigned default null;
 declare done tinyint default 0;
 declare my_cursor cursor for SELECT some_id FROM some_table;
 declare continue handler for NOT FOUND set done = 1;

 open my_cursor;
 read_loop: loop
 fetch my_cursor into some_id;
 if done then
 leave read_loop;
 end if;
 -- do something with some_id
 end loop;

 close my_cursor;
end $$

DELIMITER ;

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Compare: QueryScript

set @script := '
 foreach ($some_id: SELECT some_id FROM some_table)
 {
 -- do something with $some_id
 }
 ';
call run(@script);

 Significantly less overhead
 Familiar C-family syntax
 No need to store the code in schema
 Can execute script directly from file

call run('/path/to/script.qs');

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript conditions

 Familiar if, while or loop-while statements.
 But conditions are also tightly integrated

with SQL, and so queries make for valid
conditions.

if (@val > 3) {
 pass;
}
while (DELETE FROM world.Country
 WHERE Continent = 'Asia' LIMIT 10)
{
 throttle 2;
}

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript foreach

 A sophisticated looping device, allowing
iteration over queries, sets, numbers
range, databases, tables...

 But also acknowledges MySQL limitations
and provides with a safer access method.

 Table iteration uses I_S optimizations to
avoid excessive locks:
foreach($tbl, $scm: table like wp_posts)
 ALTER TABLE :${scm}.:${tbl} ADD COLUMN
 post_geo_location VARCHAR(128);

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript split

 Automagically breaks a bulk operation into
smaller chunks.

 Supports DELETE, UPDATE,
INSERT...SELECT, REPLACE...SELECT

 Supports single and multi table statements
split (DELETE FROM sakila.rental WHERE
 rental_date < NOW() - INTERVAL 5 YEAR);

split (insert into world.City_duplicate
 select * from world.City) {
 throttle 1;
}

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

QueryScript: more goodies

 throttle statement controls script
execution time, reduces server load

 Local variables auto-cleanup, can be used
(expanded) in statements where variables
not allowed (table names, LIMIT value etc.)

 try-catch statement is available: easy error
handling mechanism

 echo, eval, throw statements make for
easy development

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

call for help()

 common_schema documentation is
available in these formats:
– Online documentation (directly in code

repository)
– Bundled HTML download
– Inline: Just call for help():

call help('split');
+--+
| help |
+--+
| QueryScript Flow Control: split statement |
| |
| SYNOPSIS |
| |
| Single table operations, autodetect mode:

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Support common_schema

 Download and try it out
 Report issues

http://code.google.com/p/common-schema/issues/list

 Happy to receive ideas and contributions
http://bit.ly/UPC3vh
http://code.google.com/p/common-schema/issues/entry?
template=Request%20for%20new%20component

 Above all else: spread the word!

http://code.google.com/p/common-schema/issues/list
http://bit.ly/UPC3vh

D B A ' s f r a m e w o r k f o r M y S Q L
common_schema

Copyright © 2012, Shlomi Noach

Thank you!

 Visit http://openark.org for news &
updates.

 Other open source projects:
– openark kit

http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/introduction.html

– mycheckpoint
http://code.openark.org/forge/mycheckpoint

http://openark.org/
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/introduction.html
http://code.openark.org/forge/mycheckpoint

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

